I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)
As far as I understand it, they’re given equal weight in the order of operations, it’s just whichever you hit first left to right.
Ah, but if you use the rules BODMSA (or PEDMSA) then you can follow the letter order strictly, ignoring the equal precedence left-to-right rule, and you still get the correct answer. Therefore clearly we should start teaching BODMSA in primary schools. Or perhaps BFEDMSA. (Brackets, named Functions, Exponentiation, Division, Multiplication, Subtraction, Addition). I’m sure that would remove all confusion and stop all arguments. … Or perhaps we need another letter to clarify whether implicit multiplication with a coefficient and no symbol is different to explicit multiplication… BFEIDMSA or BFEDIMSA. Shall we vote on it?
Don’t need any extra letters - just need people to remember the rules around expanding brackets in the first place.
Obviously more letters would make the mnemonic worse, not better. I was making a joke.
As for the brackets ‘the rules around expanding brackets’ are only meaningful in the assumed context of our order of operations. For example, if we instead all agreed that addition should be before multiplication, then a×(b+c) would “expand” to a×b+c, because the addition is before multiplication anyway and the brackets do nothing.
Fair enough, but my point still stands.
…then you would STILL have to do multiplication first. You can’t change Maths by simply agreeing to change it - that’s like saying if we all agree that the Earth is flat then the Earth is flat. Similarly we can’t agree that 1+1=3 now. Maths is used to model the real world - you can’t “agree” to change physics. You can’t add 1 thing to 1 other thing and have 3 things now, no matter how much you might want to “agree” that there is 3, there’s only 2 things. Multiplying is a binary operation, and addition is unary, and you have to do binary operators before unary operators - that is a fact that no amount of “agreeing” can change. 2x3 is actually a contracted form of 2+2+2, which is why it has to be done before addition - you’re in fact exposing the hidden additions before you do the additions.
The brackets, by definition, say what to do first. Regardless of any other order of operations rules, you always do brackets first - that is in fact their sole job. They indicate any exceptions to the rules that would apply otherwise. They perform no other function. If you’re going to no longer do brackets first then you would simply not use them at all anymore. And in fact we don’t - when there are redundant brackets, like in (2)(1+2), we simply leave them out, leaving 2(1+2).
I believe you’re conflating the rules of maths with the notation we use to represent mathematical concepts. We can choose whatever notation we like to mean anything we like. There is absolutely nothing stopping us from choosing to interpret a+b×c as (a+b)×c rather than a+(b×c). We don’t even have to write it like that at all. We could write a,b,c×+. (And sometimes people do write it like that.) Notation is just a way to communicate. It represents the maths, but it is not itself the maths. Some notation is more convenient or more intuitive than others. × before + is a very convenient choice, because it easier to express mathematical truths clearly and concisely - but nevertheless, it is still just a choice.
You think a Maths teacher doesn’t know the difference?
Yes there is - the underlying Maths. 2x3 is short for 2+2+2, which is therefore why you have to expand multiplications before doing additions. If you “chose” to interpret 2+3x4 (which we KNOW is equal to 14, because 3x4=3+3+3+3 by definition) as (2+3)x4, you would get 20, which is clearly wrong, since 20 isn’t equal to 14.
No that’s right, because it IS written differently in different languages, but regardless of how you write it, it doesn’t change that 2+3x4=14 - the underlying Maths doesn’t change regardless of how you decide to write it. Maths is literally universal.
It’s not a choice, it’s a consequence of the fact that x is shorthand for +. i.e. 2x3=2+2+2.
It is a consequence of the definitions of what each operator does. If x is a contraction of +, then we have to expand x before we do +. If it were the other way around then we’d have to do it the other way around. Anything which is a contraction of something else has to be expanded first.
Hey man, if you want to resort to some weird appeal to authority argument despite having clear examples against what you are saying - go for it. You can choose to die on that hill if you want to.
Which are where, exactly? You haven’t presented any. You haven’t, for example, shown how one can make (2+3)x4=14.
re: appeal to authority